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Proof involves spectral analysis, analytic number theory, …, 
computer-assisted bound involving solutions of an ODE.

Many other works on computer-assisted proofs in mathematical physics.

Example 1: Dirac-Schwinger conjecture

• Fefferman, Seco, “Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential,” Rev. Mat. Iberoamericana, 1993.
• Fefferman, Seco, “Interval arithmetic in quantum mechanics,” Applications of interval computations, 1996.

Theorem: 𝐸 𝑍 = −𝑐0𝑍
7/3 +

1

8
𝑍2 − 𝑐1𝑍

5/3 + 𝑂(𝑍5/3−1/2835), as 𝑍 → ∞

𝑁: # of electrons, 𝑍: charge of nucleus
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Example 2: Kepler conjecture (Hilbert’s 18th problem)

• Hales, “A proof of the Kepler conjecture,” Ann. of Math., 2005.
• Hales et al., “A formal proof of the Kepler conjecture,” Forum Math. Pi, 2017.

Proof shows potential counterexamples
would satisfy infeasible inequalities

relaxed to ≈ 10,000s linear programs

More on this later!

Account of Flyspeck project (formal proof)
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GOAL

Classify how and which computational problems

can be used in computer-assisted proofs.

Part I: Infinite-dimensional problems (spectra, PDEs, etc.)

Part II: Finite-dimensional problems (LPs, optimisation, etc.)

Tool: The Solvability Complexity Index Hierarchy
• Classes that allow verifiable error control.

• Phase transitions (e.g., ∈ 𝑃 ⇌ not comp.) dep. on the desired accuracy.
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“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations […] Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Spec(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0 ⟹ 𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 is not invertible

Canonical basis vectors of 𝑙2(ℕ)

The infinite-dimensional spectral problem
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Applications: Quantum mechanics, structural mechanics, optics, acoustics, 
statistical physics, number theory, matter physics, PDEs, data analysis, neural 
networks and AI, nuclear scattering, optics, computational chemistry, …

Rich history of computational spectral theory: 
D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen (South 
Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. 
Golub (Stanford), A. Iserles (Cambridge), I. Ipsen (NCS), S. Jitomirskaya (UCI), A. Laptev 
(Imperial), O. Nevanlinna (Aalto), W. Schlag (Yale), E. Schrödinger (DIAS), J. Schwinger 
(Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA), S. Varadhan (NYU), J. von Neumann 
(IAS), M. Zworski (Berkeley),...

Many computer-assisted proofs involve spectra: dynamical systems, 
hydrodynamics, atomic resonances, etc.

Why spectra?
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In a series of papers in the 1950's and 1960’s, J. Schwinger examined the
foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ,
can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994)
gave a convergent algorithm for a class of 𝑉 generating compact resolvent.

For which classes of differential operators on unbounded domains do
there exist algorithms that converge to the spectrum? Can we guarantee
that the output is in the spectrum up to an arbitrarily small tolerance?

Motivating problem

• Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994.
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A =
𝑎1

𝑎2
⋱

Assumption: Algorithm can query entries of 𝐴.

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Spec 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Spec(𝐴)

Optimal: Can’t obtain ෠Γ𝑛 𝐴 → Spec 𝐴 with Spec(𝐴) ⊂ ෠Γ𝑛 𝐴 .

Warm-up: bounded diagonal operators
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A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: Γ𝑛 𝐴 = Spec 𝑃𝑛𝐴𝑃𝑛 converges to Spec(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist ෠Γ𝑛(𝐴) → Spec 𝐴 with ෠Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛?

Example: compact operators (still easy?) 

classic method
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Algorithm: Γ𝑛 𝐴 = Spec 𝑃𝑛𝐴𝑃𝑛 converges to Spec(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist ෠Γ𝑛(𝐴) → Spec 𝐴 with ෠Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛?

Answer: No!

No alg. can do this on whole class, even for self-adjoint compact operators.

Example: compact operators (still easy?) 

classic method
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

What about Jacobi operators?
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

Answer: ∃{Γ𝑛} s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Spec(𝐴) and Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛,

for any sparse normal operator 𝐴

What about Jacobi operators?

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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A curious case of limits

General bounded: A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Spec(𝐴)

Question: Can we do better?

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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General bounded: A =
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Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Spec(𝐴)

Question: Can we do better?

Answer: No! Canonically embed problems such as:

Given 𝐵 ∈ 0,1 ℕ×ℕ, does 𝐵 have a column with infinitely many 1’s?

⟹ lower bound on number of “successive limits” needed (ind. of comp. model).
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
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Class Ω ∋ 𝐴, want to compute Ξ:Ω → (ℳ, 𝑑)

• ∆0: Problems solved in finite time (v. rare for cts problems).

• ∆1: Problems solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Problems solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Problems solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Spec(𝐴)
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Spec(𝐴)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊

Error control, comp.-assisted proofs

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

One limit, no error control.

One limit: SCI≤1

Error control, comp.-assisted proofs
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=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

Two limits: SCI ≤ 2

Error control, comp.-assisted proofs
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Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

Three limits: SCI ≤ 3 …

Error control, comp.-assisted proofs
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Π0
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⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

Normal operators

“Sparse” operators

General operators“Sparse” normal operators

Compact operators

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Error control, comp.-assisted proofs
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Theorem: Let Ω be class of self-adjoint diff. operators on 𝐿2(ℝ𝑑) of the form

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 s.t.

• Smooth compactly supported functions form a core of 𝑇.
• 𝑐𝑘 are polynomially bounded and of locally bounded total variation.
Assume algorithm can:
• Point sample 𝑐𝑘(𝑞) for 𝑞 ∈ ℚ𝑑 to arbitrary prec.
• Evaluate a polynomial that bounds 𝑐𝑘 on ℝ𝑑.
Then…

(a) Know bound TV −𝑛,𝑛 𝑑 𝑐𝑘 ≤ 𝑏𝑛 ⟹ Sp,Ω ∈ Σ1.

(b) Only know asymp. bound TV −𝑛,𝑛 𝑑 𝑐𝑘 = 𝑂(𝑏𝑛)⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

Example (local uniform convergence)

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022
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Example (local uniform convergence)

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022

Verifiable

Not verifiable
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𝑉 cos(𝑥) tanh(𝑥) exp(−𝑥2) 𝟏/(1 + 𝑥2)

𝐸0 1.7561051579 0.8703478514 1.6882809272 1.7468178026

𝐸1 3.3447026910 2.9666370800 3.3395578680 3.4757613534

𝐸2 5.0606547136 4.9825969775 5.2703748823 5.4115076464

𝐸3 6.8649969390 6.9898951678 7.2225903394 7.3503220313

𝐸4 8.7353069954 8.9931317537 9.1953373991 9.3168983920

𝑇 = −∇2 + 𝑥2+ 𝑉(𝑥) on ℝ1

Verified methodNaïve method

M
ag

n
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 f

ie
ld

 s
tr

en
gt

h

Approx. of spectrum Approx. of spectrum

Spectral
pollution

Wavefunction ∝ 𝑒−(𝑟−𝑟0)
2

Examples with discrete spectra

Example with mixed spectra: aperiodic material + mag. field

𝑇𝑢 𝑟 = −
𝑑2𝑢

𝑑𝑟2
𝑟 +

𝑙 𝑙 + 1

𝑟2
+
𝑒−𝑟 − 1

𝑟
𝑢 𝑟 ,

𝑟 > 0

Spectral measures

Transport phenomena

• C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021

Further examples

Inf. aperiodic tile
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Why study these foundations?

• Classifications with SCI>1 often tell us assumptions we need to lower SCI.

• Σ1 and Π1 classifications ⟹ look-up table for computer-assisted proofs.

• Negative results prevent us from trying to prove too much.

• Much of computational literature does not prove sharp results.

Remarks:

• Can use with any model of computation.

• Existing hierarchies included as particular cases.
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What if we know a priori that we only need an

𝜺-accurate solution for a computer-assisted proof?
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The proof of Kepler’s conjecture involves solving 10,000s of LPs.

Problem: Find algorithm that for input 𝐴 ∈ ℝ𝑚×𝑁, 𝑦 ∈ ℝ𝑚, 𝑐 ∈ ℝ𝑁, computes

𝑧 ∈ argmin
𝑥

𝑥, 𝑐 s. t. 𝐴𝑥 = 𝑦, 𝑥 ≥ 0.

Linear Programs (LPs)
18/36
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LP in P

NY Times 1979. Proved by L. Khachiyan
– based on work by N. Shor, D. Yudin, A. Nemirovski.
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NY Times 1979. Proved by L. Khachiyan
– based on work by N. Shor, D. Yudin, A. Nemirovski.

Example (Karmarkar’s) algorithm:

• 𝑛 = number of variables
• 𝐿 = number of bits

𝑂(𝑛3.5𝐿2 log 𝐿 log log 𝐿 ) operations

Weakly polynomial time
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Numerical example: Random matrices

Basis pursuit (e.g., compressed sensing, type of LP):

𝑧 ∈ argmin
𝑥

𝑥 1 s. t. 𝐴𝑥 = 𝑦.

𝐴 ∈ ℝ1×𝑁 i.i.d. according to prob. dist., 𝑦 = 𝐴1𝑖, 𝑖 unif. in 1,2, … , 𝑁

Solve using spgl1 (state-of-the-art basis pursuit solver).
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Numerical example: Random matrices
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argmin
𝑥∈ℝ2

𝑥1 + 𝑥2 s. t. 𝑥1 + 1 − 𝛿 𝑥2 = 1, 𝑥𝑗 ≥ 0

MATLAB’s linprog has EXITFLAG:

+3: Solution feasible w.r.t. rel. constraint tol., but not abs. tol.

+1: Converged to a solution.

0: Number of iterations or time exceeded maximum.

-2: No feasible point found.

-3: Problem unbounded.

-4: NaN encountered.

-5: Both primal and dual problems are infeasible.

-7: Search direction became too small.

-9: Solver lost feasibility.

Numerical example: Innocent LP
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Numerical example: Innocent LP

Algorithms

Ƹ𝑥 − 𝑥 2 Ƹ𝑥 − 𝑥 2 Ƹ𝑥 − 𝑥 2

𝑥 = computed “solution”, Ƹ𝑥 = true solution, 𝜀mach = 2−52

23/36



Numerical example: Innocent LP

Algorithms

Ƹ𝑥 − 𝑥 2 Ƹ𝑥 − 𝑥 2 Ƹ𝑥 − 𝑥 2

𝑥 = computed “solution”, Ƹ𝑥 = true solution, 𝜀mach = 2−52

23/36



What went wrong?
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What went wrong?
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Recall complexity of Karmarkar’s algorithm: 𝑂(𝑛3.5𝐿2 log 𝐿 log log 𝐿 )

Question: What happens with 𝐿 = ∞?

E.g., irrational inputs, computer-assisted proofs etc.

1st issue: Smale’s 9th problem*

*Steve Smale’s list of problems for the 21st century (requested by Vladimir Arnold), inspired by Hilbert’s famous list.
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“Real number computations and algorithms which work only in exact
arithmetic can offer only limited understanding. Models which process
approximate inputs and which permit round-off computations are called for.”

- S. Smale (from the list of mathematical problems for the 21st century)

There will always be numbers which you can't work with exactly!

2nd issue: inexactness
26/36



“Real number computations and algorithms which work only in exact
arithmetic can offer only limited understanding. Models which process
approximate inputs and which permit round-off computations are called for.”

- S. Smale (from the list of mathematical problems for the 21st century)

There will always be numbers which you can't work with exactly!

Extended model: Given domain Ω, for any 𝜄 ∈ Ω and 𝑘 ∈ ℕ, the algorithm 
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Extended Smale’s 9th problem

1st issue: Smale’s 9th problem
Polytime alg. for feasibility of linear 

system of inequalities over ℝ
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Talked about LPs and basis pursuit. Also have:

• Semidefinite prog.:

argmin
𝑋∈𝕊𝑛

𝑋, 𝐶 s. t. 𝑋, 𝐴𝑘 = 𝑏𝑘 , 𝑘 = 1,… ,𝑚, 𝑋 ≽ 0.

• Unconstrained Lasso:

argmin
𝑥

𝐴𝑥 − 𝑦 2
2 + 𝜆𝒥 𝑥 , 𝒥 𝑥 = 𝑥 1or TV 𝑥 .

• Constrained Lasso:

argmin
𝑥

𝐴𝑥 − 𝑦 2
2 s. t. 𝒥 𝑥 ≤ 𝛿, 𝒥 𝑥 = 𝑥 1or TV 𝑥 .

𝐴 ∈ ℂ𝑚×𝑁 , 𝑦 ∈ ℂ𝑚

Other common optimization problems
28/36
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Theorem: For any of prev. problems, integer 𝐾 ≥ 3, ∃ class Ω(𝐾) of inputs s.t. simultaneously

1. No (random) alg. can produce 𝐾 correct digits over all of Ω (with prob. ≥ 𝑝, for any 𝑝 > 1/2).

2. If we allow random alg. with non-zero prob. of not halting, then, for any 𝑝 > 2/3, no alg. produces 
𝐾 correct digits over all of Ωwith prob. ≥ 𝑝. However, ∃ such an alg. for 𝑝 = 2/3.

3. (a) ∃ alg. that produces 𝐾 −1 correct digits over all of Ω. However, for any such alg., 𝑇 > 0, fixed 
input dim. (𝑚,𝑁) , ∃𝜄 ∈ Ωof dim. (𝑚,𝑁) s.t. the runtime on input 𝜄 exceeds 𝑇.
(b) For any random alg. Γ, 𝑇 > 0, fixed input dim. (𝑚,𝑁) and 𝑝 < 1/2, ∃𝜄 ∈ Ωof dim. (𝑚,𝑁) s.t.

ℙ Γ 𝜄 doesnot have𝐾 −1correct digits or run time > 𝑇 > 𝑝.

4. ∃alg. that produces 𝐾 −2 correct digits over all of Ω s.t. on an input with dim. (𝑚,𝑁) (arbitrary) 
(a) The runtime (and, in the Turing case, the space complexity) is O(poly(𝑚+𝑁)).
(b) The number of digits required from the oracle is O(poly(log(𝑚+𝑁))).

5. It is impossible to decide if a given alg. fails to produce 𝐾 correct digits on a given input (with prob. 
>1/2 in randomised case), even when given an oracle that solves the original problem accurately. 
Hence, producing an EXITFLAG is strictly harder than solving the original problem.

• B., Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.

NB: Extends to problem of feasibility.
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Related to 2nd

numerical example

1st numerical example
⟹ happens in practice!
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(b) The number of digits required from the oracle is O(poly(log(𝑚+𝑁))).

5. It is impossible to decide if a given alg. fails to produce 𝐾 correct digits on a given input (with prob. 
>1/2 in randomised case), even when given an oracle that solves the original problem accurately. 
Hence, producing an EXITFLAG is strictly harder than solving the original problem.

• B., Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.

NB: Extends to problem of feasibility.

Related to 2nd

numerical example

1st numerical example
⟹ happens in practice!



Strong breakdown-epsilon (e. g. , 10−𝐾 in prev. thm.):

𝜀𝐵
𝑠 = sup 𝜀 ≥ 0: ∀ alg. Γ ∃𝜄 ∈ Ω s. t. dist Γ 𝜄 , Ξ 𝜄 > 𝜀

Weak breakdown-epsilon (e. g. , 10−(𝐾−1) in prev. thm.):

𝜀𝐵
𝑤 = sup

𝜀 ≥ 0: ∀ alg. Γ, ∀𝑇 > 0, ∃𝜄 ∈ Ω s. t. dist Γ 𝜄 , Ξ 𝜄 > 𝜀

or runtime Γ, 𝜄 > 𝑇

Breakdown epsilons (computational limitations)
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How much accuracy do we need in a computer assisted proof?

Is the breakdown epsilon for the problem below that threshold?

Breakdown epsilons (computational limitations)
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Given 𝜄 ∈ Ω ⊆ ℝ𝑛, have feasible set 𝐹 𝜄 & objective fun. 𝑓𝜄.

Compute: OPT 𝜄 = min
𝑥∈𝐹 𝜄

𝑓𝜄(𝑥)

A related story: Hardness of approximation
31/36



Given 𝜄 ∈ Ω ⊆ ℝ𝑛, have feasible set 𝐹 𝜄 & objective fun. 𝑓𝜄.

Compute: OPT 𝜄 = min
𝑥∈𝐹 𝜄

𝑓𝜄(𝑥)

Does there exist alg. Γ s.t. ∀𝜄 ∈ Ω, Γ 𝜄 ∈ 𝐹 𝜄 and

𝑓𝜄 Γ 𝜄 ≤ 1 + 𝜀 OPT 𝜄 , runtime Γ, 𝜄 = 𝑂(poly(𝑛))

A related story: Hardness of approximation
31/36



Given 𝜄 ∈ Ω ⊆ ℝ𝑛, have feasible set 𝐹 𝜄 & objective fun. 𝑓𝜄.

Compute: OPT 𝜄 = min
𝑥∈𝐹 𝜄

𝑓𝜄(𝑥)

Does there exist alg. Γ s.t. ∀𝜄 ∈ Ω, Γ 𝜄 ∈ 𝐹 𝜄 and

𝑓𝜄 Γ 𝜄 ≤ 1 + 𝜀 OPT 𝜄 , runtime Γ, 𝜄 = 𝑂(poly(𝑛))

Typically, for combinatorial prob., ∃𝜀𝐴 > 0 s.t. computing 𝜀-approx. solution is

(a) ∈ P if 𝜀𝐴 < 𝜀 and (b) NP-hard if 𝜀 < 𝜀𝐴.

A related story: Hardness of approximation
31/36



Given 𝜄 ∈ Ω ⊆ ℝ𝑛, have feasible set 𝐹 𝜄 & objective fun. 𝑓𝜄.

Compute: OPT 𝜄 = min
𝑥∈𝐹 𝜄

𝑓𝜄(𝑥)

Does there exist alg. Γ s.t. ∀𝜄 ∈ Ω, Γ 𝜄 ∈ 𝐹 𝜄 and

𝑓𝜄 Γ 𝜄 ≤ 1 + 𝜀 OPT 𝜄 , runtime Γ, 𝜄 = 𝑂(poly(𝑛))

Typically, for combinatorial prob., ∃𝜀𝐴 > 0 s.t. computing 𝜀-approx. solution is

(a) ∈ P if 𝜀𝐴 < 𝜀 and (b) NP-hard if 𝜀 < 𝜀𝐴.

A related story: Hardness of approximation
31/36



Phase transitions
Hardness of Approximation

PCP Theorem* often leads to threshold 𝜀𝐴 > 0.
Assuming P ≠ NP, often have phase transition:

𝜀 < 𝜀𝐴
Comp. 𝜀-approx. is NP-hard (thus ∉ P) 

𝜀𝐴 < 𝜀
Comp. 𝜀-approx. ∈ P

*2001 Gödel Prize awarded to S. Arora, U. Feige, S.
Goldwasser, C. Lund, L. Lovász, R. Motwani, S. Safra, M.
Sudan, and M. Szegedy for work on the PCP theorem and its
connection to hardness of approximation.
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Phase transitions

𝜀𝐵
𝑠 < 𝜀 < 𝜀𝐵

𝑤

Comp. 𝜀-approx. ∉ k-EXPTIME ∀𝑘
Possible to comp. 𝜀-approx. 

𝜀 < 𝜀𝐵
𝑠

Impossible to comp. 𝜀-approx. 

𝜀𝐵
𝑤 < 𝜀

Comp. 𝜀-approx. ∈ P

Generalised Hardness of Approximation (GHA)

Extended Smale’s 9th problem shows:

Holds even if P = NP!

Hardness of Approximation

PCP Theorem* often leads to threshold 𝜀𝐴 > 0.
Assuming P ≠ NP, often have phase transition:

𝜀 < 𝜀𝐴
Comp. 𝜀-approx. is NP-hard (thus ∉ P) 

𝜀𝐴 < 𝜀
Comp. 𝜀-approx. ∈ P

*2001 Gödel Prize awarded to S. Arora, U. Feige, S.
Goldwasser, C. Lund, L. Lovász, R. Motwani, S. Safra, M.
Sudan, and M. Szegedy for work on the PCP theorem and its
connection to hardness of approximation.
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The SCI hierarchy for computer-assisted proofs

𝜀𝐵
𝑤 < 𝜀

Comp. 𝜀-approx. ∈ P

𝜀𝐵
𝑠 < 𝜀 < 𝜀𝐵

𝑤

Comp. 𝜀-approx. ∉ k-EXPTIME ∀𝑘
Possible to comp. 𝜀-approx. 

𝜀 < 𝜀𝐵
𝑠

Impossible to comp. 𝜀-approx. 

Π0 = Δ0 = Σ0

⊊

Δ1

⊊

Σ1 ≠ Σ1 ∪ Π1 ≠ Π1

Δ2

⊊
Σ2 ≠ Σ2 ∪ Π2 ≠ Π2

⊊
⋯

Arbitrary prec. 
or decision problems

𝜺 > 𝟎 precision
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• The SCI hierarchy appears throughout computational mathematics.

• Results so far: spectral theory, PDEs and ODEs, iterative rational 
maps, generalized Collatz problem (and dec. problems), topology, 
inverse problems, optimization, AI, …

• Can we classify which PDEs allow 𝛴1 ∪ 𝛱1 verification of blow-up?

• Nonlinear dyn. systems can be studied through transfer operators. 
Can we develop a foundations theory for their spectral properties? 
Can this be done by simply observing the dynamical system? 

Further examples and questions I

• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.
• B., Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.
• Hansen, Becker, “Computing solutions of Schrödinger equations on unbounded domains,” preprint.
• C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022. 
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA., 1932.
• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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• GHA appears in learning problems (adaptive/probabilistic training data):

Smale’s 18th problem: What are the limits of artificial intelligence?

Image reconstruction and inverse problems where:
• Stable and accurate neural networks exist BUT…

• Whether we can train them depends on 𝜀, amount of training data, stability requirements.

• Can we develop a theory for characterisations of phase transitions in GHA?      
NB: Specific cases known for compressed sensing etc.

• What other types of problems have this phenomena?

• Re computer-assisted proofs: For which problems can we compute exit flags?

Further examples and questions II

• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.
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Classifications ⟹ assumptions needed for use in a computer-assisted proof.

SCI hierarchy: a tool that allows us to
• Classify the difficulty of both continuous and discrete computational problems.

• Prove that algorithms are optimal and find them.

• Σ1 and Π1 classifications allow verified computations.

GHA: phase transitions (for inexact input) depending on the accuracy goal 𝜀
• 𝜀𝐵

𝑤 < 𝜀: ∈ 𝑃.

• 𝜀𝐵
𝑠 < 𝜀 < 𝜀𝐵

𝑤: computable, but ∉ k−EXPTIME ∀𝑘.

• 𝜀 < 𝜀𝐵
𝑠 : impossible to compute.

abastoun@ed.ac.uk m.colbrook@damtp.cam.ac.uk

Summary
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Additional slides



When can we make AI robust and trustworthy?

“AI generated hallucination”, from Facebook and NYU’s
FastMRI challenge 2020

From Finlayson et al., “Adversarial attacks on
medical machine learning,” Science, 2019.

Problem: hallucinations and instability 



Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

𝐴 ∈ ℂ𝑚×𝑁 modality,𝑚 < 𝑁 , 𝑆 = 𝑦𝑗 𝑗=1

𝑅
samples

Arises when given 𝑦 ≈ 𝐴𝑥 + 𝑒.



Arbitrary precision of training data



Given Ω ⊆ ℂ𝑛, define

Act Ω = 𝑗: ∃𝑥, 𝑦 ∈ Ω, 𝑥𝑗 ≠ 𝑦𝑗 ,        ΩAct = 𝑥: ∃𝑦 ∈ Ω, 𝑥Act Ω 𝑐 = 𝑦Act Ω 𝑐

• Condition of a mapping Ξ: ෡Ω ⇉ ℂ𝑚 with Ω ⊆ ෡Ω:

Cond Ξ, Ω = sup
𝑥∈Ω

lim
𝜀→0+

sup
𝑥+𝑧∈ΩAct∩෡Ω
0< 𝑧 ∞<𝜀

dist(Ξ 𝑥 + 𝑧 , Ξ(𝑥))

𝑧 ∞

• For problems with constraints (e.g., basis pursuit 𝑃1 or LPs)

𝜈 𝐴, 𝑦 = inf 𝜀 ≥ 0: ො𝑦 − 𝑦 2, መ𝐴 − 𝐴 ≤ 𝜀, መ𝐴, ො𝑦 ∈ ΩAct and infeasible

𝐶FP 𝐴, 𝑦 =
max 𝑦 2, 𝐴

𝜈 𝐴, 𝑦

• Renegar condition number
𝜇 𝐴, 𝑦 = inf 𝜀 ≥ 0: ො𝑦 − 𝑦 2, መ𝐴 − 𝐴 ≤ 𝜀, መ𝐴, ො𝑦 ∈ ΩAct, Ξ multivalued

𝐶RCC 𝐴, 𝑦 =
max 𝑦 2, 𝐴

𝜇 𝐴, 𝑦

Condition numbers



Theorem: For any of prev. problems, integer 𝐾 ≥ 3 and 𝐿 ∈ ℕ, ∃ a well-conditioned class Ω(𝐾)
of inputs s.t. simultaneously 
1. No deterministic alg. can, given a training set 𝜄𝐴,𝑆 ∈ Ω𝒯, produce a neural network (NN) 𝜙with

1 min
𝑦∈𝑆

inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 −𝑥∗ 2 ≤ 10−𝐾 ∀ 𝐴,𝑆 ∈ Ω 𝐾 .

For any 𝑝 > 1/2, no random alg. (any model of comp.) can produce a NN 𝜙 s.t. (1) holds with prob. ≥ 𝑝.

2.      (a) ∃deterministic alg. that , given a training set 𝜄𝐴,𝑆 ∈ Ω𝒯, produces a neural network (NN) 𝜙with

2 max
𝑦∈𝑆

inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 −𝑥∗ 2 ≤ 10− 𝐾−1 ∀ 𝐴,𝑆 ∈ Ω 𝐾 .

(b) However, for any probabilistic Turing Machine that produces such a NN, any 𝑀 ∈ ℕ and

𝑝 ∈ 0,
𝑁−𝑚

𝑁+1−𝑚
, there exists a training set 𝜄𝐴,𝑆 ∈ Ω𝒯 s.t.∀𝑦 ∈ 𝑆

ℙ inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 − 𝑥∗ 2 > 10−(𝐾−1) or size of trainingdata to construct𝜙 exceeds𝑀 > 𝑝.

3.     ∃deterministic alg. that, given a training set 𝜄𝐴,𝑆 ∈ Ω𝒯, produces a NN 𝜙 accessing at most 𝐿

bl     training samples of 𝜄𝐴,𝑆 s.t.

3 max
𝑦∈𝑆

inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 − 𝑥∗ 2 ≤ 10− 𝐾−2 ∀ 𝐴,𝑆 ∈ Ω 𝐾 .

• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.
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• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

Holds for any architecture, any precision of training data.
⟹ Classification theory telling us what can and cannot be done



Given 𝐾 ∈ ℕ, 𝑀 ∈ ℝ, 𝐴 ∈ ℝ𝑚×𝑁 , and 𝑦 ∈ ℝ𝑚 does ∃𝑥 ∈ ℝ𝑁 s.t.

𝑥, 𝑐 𝐾 = 10𝐾 𝑥, 𝑐 10−𝐾 ≤ 𝑀 and 𝐴𝑥 = 𝑦, 𝑥 ≥ 0?

Ξ𝐾 𝐴, 𝑦 = ቊ
Yes, if such an 𝑥 exists
No, otherwise.

Feasibility problem



Theorem: There are infinitely many 𝑀 ∈ ℝ such that the following happens: for any integer 
𝐾 ≥ 3, ∃ class Ω(𝐾) of inputs s.t. simultaneously 

1. ∄ sequence of alg. Γ𝑛 s.t.Γ𝑛 ↑ Ξ𝐾 on Ω. I.e., Ξ𝐾 , Ω ∉ Σ1.

2. No random alg. exists that solves Ξ𝐾 on all inputs with probability exceeding 1/2. 

3. (a) ∃ alg. that solves Ξ𝐾−1. However, for any such alg., 𝑇 > 0, fixed input dim. (𝑚,𝑁) , ∃𝜄 ∈ Ωof 
dim. (𝑚,𝑁) s.t. the runtime on input 𝜄 exceeds 𝑇.

(b) For any random alg. Γ, 𝑇 > 0, fixed input dim. (𝑚,𝑁) and 𝑝 < 1/2, ∃𝜄 ∈ Ωof dim. (𝑚,𝑁) s.t.

ℙ Γ 𝜄 ≠ Ξ𝐾−1 𝜄 or run time > 𝑇 > 𝑝.

4.      ∃alg. that solves Ξ𝐾−2 over all ofΩ s.t. on an input with dim. (𝑚,𝑁) (arbitrary) 

(a) The runtime (and, in the Turing case, the space complexity) is O(poly(𝑚+𝑁)). 

(b) The number of digits required from the oracle is O(poly(log(𝑚+𝑁))).

• B., Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.



NB: There are classes Ω s.t. infinitely many 𝜄 ∈ Ω have 𝐶𝑅𝐶𝐶 = ∞. 
However, ∃ alg. that solves LP/basis pursuit to 𝐾 digits on Ω s.t.

(a) Runtime (and, in Turing case, space complexity) is O(poly(𝑚+𝑁+𝐾)). 

(b) Number of digits required from oracle is O(poly(log(𝑚+𝑁 + K))).



The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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Example counterpart theorem
Certain conditions: stable neural networks trained with exponential accuracy. 
E.g., approximate Łojasiewicz-type inequality:

1 min
𝑥∈ℂ𝑁

𝑓(𝑥) s. t. 𝐴𝑥 − 𝑦 ≤ ε

dist 𝑥, solution ≤ 𝛼([𝑓 𝑥 − 𝑓∗] + [ 𝐴𝑥 − 𝑦 − 𝜀] + 𝛿)

Fast Iterative REstarted NETworks (FIRENETs)
(unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm that, under above assumption, produces stable neural 
networks 𝜑𝑛 of width 𝑂(𝑁), depth 𝑂(𝑛), guaranteed worst bound

dist 𝜑𝑛(𝑦), solution ≲ 𝑒−𝑛 + 𝛿

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., “WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions,” SIAM J. Imaging Sci., 2022.



Numerical example of GHA

• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.



• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

Numerical example of GHA



Example of severe instability

• Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
• Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of AI,” PNAS, 2020.

MRI: discrete 2D 
Fourier transform, 
60% subsampling.

Perturbations 
computed in real 
space, mapped to 
measurement space.



FIRENET: provably stable (even to adversarial examples) and accurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Assumptions on sampling 
and approximate sparseness 
give approximate Łojasiewicz



MRI: discrete 2D 
Fourier transform, 
15% subsampling.

All networks 
trained on 5000 
images of ellipses

Key pillars: stability and accuracy

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with no noise: accurate but unstable

U-Net: standard 
neural network 
architecture for 
imaging. Approx 4 
million parameters.

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with noise: stable but inaccurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Open problem: use the toolkit to precisely prove theorems 
about optimal trade-offs.



Stabilising unstable neural networks


