# The Solvability Complexity Index Hierarchy \& Generalised Hardness of Approximation 

## On the role of foundations of computation in computer-assisted proofs

Alexander Bastounis (abastoun@ed.ac.uk)
University of Edinburgh
Matthew Colbrook (m.colbrook@damtp.cam.ac.uk)
University of Cambridge + École Normale Supérieure

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code

## Example 1: Dirac-Schwinger conjecture

$E(Z)=$ ground state energy of

$$
H=\sum_{k=1}^{N}\left(-\Delta_{x_{k}}-Z\left|x_{k}\right|^{-1}\right)+\sum_{j \leq k}\left|x_{j}-x_{k}\right|^{-1}
$$

Theorem: $E(Z)=-c_{0} Z^{7 / 3}+\frac{1}{8} Z^{2}-c_{1} Z^{5 / 3}+O\left(Z^{5 / 3-1 / 2835}\right)$, as $Z \rightarrow \infty$

Proof involves spectral analysis, analytic number theory, ..., computer-assisted bound involving solutions of an ODE.

- Fefferman, Seco, "Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential," Rev. Mat. Iberoamericana, 1993.
- Fefferman, Seco, "Interval arithmetic in quantum mechanics," Applications of interval computations, 1996.


## Example 2: Kepler conjecture (Hilbert's 18th problem)

Proof shows potential counterexamples would satisfy infeasible inequalities relaxed to $\approx 10,000$ s linear programs

More on this later!


- Hales, "A proof of the Kepler conjecture," Ann. of Math., 2005.
- Hales et al., "A formal proof of the Kepler conjecture," Forum Math. Pi, 2017.


## GOAL

## Classify how and which computational problems

 can be used in computer-assisted proofs.Part I: Infinite-dimensional problems (spectra, PDEs, etc.)
Part II: Finite-dimensional problems (LPs, optimisation, etc.)

Tool: The Solvability Complexity Index Hierarchy

- Classes that allow verifiable error control.
- Phase transitions (e.g., $\in P \rightleftharpoons$ not comp.) dep. on the desired accuracy.

The infinite-dimensional spectral problem

$$
A^{\prime \prime}=\mathrm{"}\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right), \quad A\left(\sum_{k=1}^{\infty} x_{k} e_{k}\right)=\sum_{j=1}^{\infty}\left(\sum_{k=1}^{\infty} a_{j k} x_{k}\right) e_{j}
$$

## Finite-dimensional

Eigenvalues of $B \in \mathbb{C}^{n \times n}$
$\left\{\lambda_{j} \in \mathbb{C}: \operatorname{det}\left(B-\lambda_{j} I\right)=0\right\} \quad \Rightarrow\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}$
"Most operators that arise in practice are not presented in a representation in which they are diagonalized, and it is often very hard to locate even a single point in the spectrum. Thus, one often has to settle for numerical approximations [...] Unfortunately, there is a dearth of literature on this basic problem and, so far as we have been able to tell, there are no proven [general] techniques." W. Arveson, Berkeley (1994)

## Why spectra?

Applications: Quantum mechanics, structural mechanics, optics, acoustics, statistical physics, number theory, matter physics, PDEs, data analysis, neural networks and AI, nuclear scattering, optics, computational chemistry, ...

Rich history of computational spectral theory:
D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen (South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. Golub (Stanford), A. Iserles (Cambridge), I. Ipsen (NCS), S. Jitomirskaya (UCI), A. Laptev (Imperial), O. Nevanlinna (Aalto), W. Schlag (Yale), E. Schrödinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley),...

Many computer-assisted proofs involve spectra: dynamical systems, hydrodynamics, atomic resonances, etc.

## Motivating problem

In a series of papers in the 1950's and 1960's, J. Schwinger examined the foundations of quantum mechanics. A key problem he considered:

# Given a self-adjoint Schrödinger operator $-\Delta+V$ on $\mathbb{R}$, can we approximate its spectrum? 

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994) gave a convergent algorithm for a class of $V$ generating compact resolvent.

For which classes of differential operators on unbounded domains do there exist algorithms that converge to the spectrum? Can we guarantee that the output is in the spectrum up to an arbitrarily small tolerance?

## Warm-up: bounded diagonal operators

$$
A=\left(\begin{array}{lll}
a_{1} & & \\
& a_{2} & \\
& & \ddots
\end{array}\right)
$$

Assumption: Algorithm can query entries of $A$.
Algorithm: $\Gamma_{n}(A)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \rightarrow \operatorname{Spec}(A)=\overline{\left\{a_{1}, a_{2}, \ldots\right\}}$ in Haus. Metric. One-sided error control: $\Gamma_{n}(A) \subset \operatorname{Spec}(A)$

Optimal: Can't obtain $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Spec}(A)$ with $\operatorname{Spec}(A) \subset \hat{\Gamma}_{n}(A)$.

## Example: compact operators (still easy?)



$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\Gamma_{n}(A)=\operatorname{Spec}\left(P_{n} A P_{n}\right)$ converges to $\operatorname{Spec}(A)$ in Haus. Metric. Question: Can we verify the output?
i.e., Does there exist $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Spec}(A)$ with $\hat{\Gamma}_{n}(A) \subset \operatorname{Spec}(A)+B_{2^{-n}}$ ?

## Example: compact operators (still easy?)



Algorithm: $\Gamma_{n}(A)=\operatorname{Spec}\left(P_{n} A P_{n}\right)$ converges to $\operatorname{Spec}(A)$ in Haus. Metric. Question: Can we verify the output?
i.e., Does there exist $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Spec}(A)$ with $\hat{\Gamma}_{n}(A) \subset \operatorname{Spec}(A)+B_{2}-n$ ?

Answer: No!
No alg. can do this on whole class, even for self-adjoint compact operators.

## What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.

## What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!

## What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!
Answer: $\exists\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\operatorname{Spec}(A)$ and $\Gamma_{n}(A) \subset \operatorname{Spec}(A)+B_{2^{-n}}$, for any sparse normal operator $A$

- C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett., 2019.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.


## A curious case of limits

General bounded: $\quad A=\left(\begin{array}{ccc}a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right)$

# Algorithm: $\exists\left\{\Gamma_{n_{3}, n_{2}, n_{1}}\right\}$ s.t. $\lim _{n_{3} \rightarrow \infty} \lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{3}, n_{2}, n_{1}}(A)=\operatorname{Spec}(A)$ 

## Question: Can we do better?

## A curious case of limits

General bounded:

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\exists\left\{\Gamma_{n_{3}, n_{2}, n_{1}}\right\}$ s.t. $\lim _{n_{3} \rightarrow \infty} \lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{3}, n_{2}, n_{1}}(A)=\operatorname{Spec}(A)$
Question: Can we do better?

## Answer: No! Canonically embed problems such as:

Given $B \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$, does $B$ have a column with infinitely many 1 's?
$\Rightarrow$ lower bound on number of "successive limits" needed (ind. of comp. model).

## Solvability Complexity Index Hierarchy

## Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d)$ <br> metric space

- $\Delta_{0}$ : Problems solved in finite time ( v . rare for cts problems).
- $\Delta_{1}$ : Problems solved in "one limit" with full error control:

$$
d\left(\Gamma_{n}(A), \Xi(A)\right) \leq 2^{-n}
$$

- $\Delta_{2}$ : Problems solved in "one limit":

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A)
$$

- $\Delta_{3}$ : Problems solved in "two successive limits":

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

## Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d) \longleftarrow$ m.+.. эсе

- $\Delta_{0}$ : Problems solved in finite time ( v . rare for cts problem prof f...
- $\Delta_{1}$ : Problems solved in "one limit" with full err

$$
d\left(\Gamma_{n}(A), \Xi(A)^{\prime}\right.
$$

- $\Delta_{2}$ : Problems solved in "one I:

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

## Error control for spectral problems

$\Sigma_{1}$ convergence

$$
\Xi(A)=\operatorname{Spec}(A)
$$



- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$


## Error control for spectral problems

$\Sigma_{1}$ convergence

$\Pi_{1}$ convergence
$\Xi(A)=\operatorname{Spec}(A)$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$
$\cdot \Pi_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Xi(A)} \operatorname{dist}\left(z, \Gamma_{n}(A)\right) \leq 2^{-n}$ Such problems can be used in a proof!

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$
Increasing difficulty
Error control, comp.-assisted proofs


Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

## Error control, comp.-assisted proofs



Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

## Error control, comp.-assisted proofs



Two limits: $\mathrm{SCl} \leq 2$

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

## Error control, comp.-assisted proofs



Three limits: SCI $\leq 3$

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

## Error control, comp.-assisted proofs

"Sparse" operators


General operators

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

## Error control, comp.-assisted proofs



Sample: some results for bounded op. on $l^{2}(\mathbb{N})$

## Error control, comp.-assisted proofs


"Sparse" normal operators
"Sparse" operators


General operators Normal operators

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...
C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.

## Example (local uniform convergence)

Theorem: Let $\Omega$ be class of self-adjoint diff. operators on $L^{2}\left(\mathbb{R}^{d}\right)$ of the form

$$
T=\sum_{k \in \mathbb{Z}_{\geq 0}^{d}},|k| \leq N ~ c_{k}(x) \partial^{k} \quad \text { s.t. }
$$

- Smooth compactly supported functions form a core of $T$.
- $\left\{c_{k}\right\}$ are polynomially bounded and of locally bounded total variation. Assume algorithm can:
- Point sample $\left\{c_{k}(q)\right\}$ for $q \in \mathbb{Q}^{d}$ to arbitrary prec.
- Evaluate a polynomial that bounds $\left\{c_{k}\right\}$ on $\mathbb{R}^{d}$.

Then...

[^0]
## Example (local uniform convergence)

Theorem: Let $\Omega$ be class of self-adjoint diff. operators on $L^{2}\left(\mathbb{R}^{d}\right)$ of the form

$$
T=\sum_{k \in \mathbb{Z}_{\geq 0}^{d},|k| \leq N} c_{k}(x) \partial^{k} \quad \text { s.t. }
$$

- Smooth compactly supported functions form a core of $T$.
- $\left\{c_{k}\right\}$ are polynomially bounded and of locally bounded total variation. Assume algorithm can:
- Point sample $\left\{c_{k}(q)\right\}$ for $q \in \mathbb{Q}^{d}$ to arbitrary prec.
- Evaluate a polynomial that bounds $\left\{c_{k}\right\}$ on $\mathbb{R}^{d}$. Then

Verifiable

Not verifiable
(a) Know bound $\mathrm{TV}_{[-n, n]^{d}}\left(c_{k}\right) \leq b_{n} \Rightarrow\{\mathrm{Sp}, \Omega\} \in \Sigma_{1}$.
(b) Only know asymp. bound $\mathrm{TV}_{[-n, n]^{d}}\left(c_{k}\right)=O\left(b_{n}\right) \Rightarrow\{\mathrm{Sp}, \Omega\} \in \Delta_{2} \backslash\left(\Sigma_{1} \cup \Pi_{1}\right)$.

[^1]
## Examples with discrete spectra

Further examples

| $T=-\nabla^{2}+x^{2}+V(x)$ on $\mathbb{R}^{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $V$ | $\cos (x)$ | $\tanh (x)$ | $\exp \left(-x^{2}\right)$ | $1 /\left(1+x^{2}\right)$ |
| $E_{0}$ | 1.7561051579 | 0.8703478514 | 1.6882809272 | 1.7468178026 |
| $E_{1}$ | 3.3447026910 | 2.9666370800 | 3.3395578680 | 3.4757613534 |
| $E_{2}$ | 5.0606547136 | 4.9825969775 | 5.2703748823 | 5.4115076464 |
| $E_{3}$ | 6.8649969390 | 6.9898951678 | 7.2225903394 | 7.3503220313 |
| $E_{4}$ | 8.7353069954 | 8.9931317537 | 9.1953373991 | 9.3168983920 |

## Spectral measures

Example with mixed spectra: aperiodic material + mag. field
Naïve method


Approx. of spectrum

Verified method


Transport phenomena
Inf. aperiodic tile


## Why study these foundations?

- Classifications with SCl>1 often tell us assumptions we need to lower SCI.
- $\Sigma_{1}$ and $\Pi_{1}$ classifications $\Rightarrow$ look-up table for computer-assisted proofs.
- Negative results prevent us from trying to prove too much.
- Much of computational literature does not prove sharp results.


## Remarks:

- Can use with any model of computation.
- Existing hierarchies included as particular cases.

What if we know a priori that we only need an $\varepsilon$-accurate solution for a computer-assisted proof?

## Linear Programs (LPs)

The proof of Kepler's conjecture involves solving 10,000s of LPs.

Problem: Find algorithm that for input $A \in \mathbb{R}^{m \times N}, y \in \mathbb{R}^{m}, c \in \mathbb{R}^{N}$, computes
$z \in \underset{x}{\operatorname{argmin}}\langle x, c\rangle$
s.t. $A x=y$,
$x \geq 0$.

## Linear Programs (LPs)

The proof of Kepler's conjecture involves solving 10,000s of LPs.

Problem: Find algorithm that for input $A \in \mathbb{R}^{m \times N}, y \in \mathbb{R}^{m}, c \in \mathbb{R}^{N}$, computes

$$
z \in \underset{x}{\operatorname{argmin}}\langle x, c\rangle \quad \text { s.t. } \quad A x=y, \quad x \geq 0 .
$$

Often, we want minimisers, and not the objective function.

## Linear Programs (LPs)

The proof of Kepler's conjecture involves solving 10,000s of LPs.

Problem: Find algorithm that for input $A \in \mathbb{R}^{m \times N}, y \in \mathbb{R}^{m}, c \in \mathbb{R}^{N}$, computes

$$
z \in \underset{x}{\operatorname{argmin}}\langle x, c\rangle \quad \text { s.t. } \quad A x=y, \quad x \geq 0 .
$$

Often, we want minimisers, and not the objective function.


NY Times 1979. Proved by L. Khachiyan

- based on work by N. Shor, D. Yudin, A. Nemirovski.



## Example (Karmarkar's) algorithm:

- $n=$ number of variables
- $L=$ number of bits
$O\left(n^{3.5} L^{2} \log (L) \log (\log (L))\right)$ operations
Weakly polynomial time

NY Times 1979. Proved by L. Khachiyan

- based on work by N. Shor, D. Yudin, A. Nemirovski.



## Example (Karmarkar's) algorithm:

- $n=$ number of variables
- $L=$ number of bits
$O\left(n^{3.5} L^{2} \log (L) \log (\log (L))\right)$ operations
Weakly polynomial time

NY Times 1979. Proved by L. Khachiyan

- based on work by N. Shor, D. Yudin, A. Nemirovski.


## Numerical example: Random matrices

Basis pursuit (e.g., compressed sensing, type of LP):

$$
z \in \underset{x}{\operatorname{argmin}}\|x\|_{1} \quad \text { s.t. } \quad A x=y .
$$

$A \in \mathbb{R}^{1 \times N}$ i.i.d. according to prob. dist., $y=A_{1 i}, i$ unif. in $\{1,2, \ldots, N\}$

Solve using spgl1 (state-of-the-art basis pursuit solver).

## Numerical example: Random matrices

Basis pursuit (e.g., compressed sensing, type of LP):

$$
z \in \underset{x}{\operatorname{argmin}}\|x\|_{1} \quad \text { s.t. } \quad A x=y .
$$

$A \in \mathbb{R}^{1 \times N}$ i.i.d. according to prob. dist., $y=A_{1 i}, i$ unif. in $\{1,2, \ldots, N\}$

Solve using spgl1 (state-of-the-art basis pursuit solver).

## Numerical example: Random matrices



## Numerical example: Random matrices



## Numerical example: Innocent LP

```
argmin }\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}\quad\mathrm{ s.t. }\quad\mp@subsup{x}{1}{}+(1-\delta)\mp@subsup{x}{2}{}=1,\quad\mp@subsup{x}{j}{}\geq
    x\in\mathbb{R}}\mp@subsup{}{}{2
s.t. \(\quad x_{1}+(1-\delta) x_{2}=1\),
\(x_{j} \geq 0\)
```

MATLAB's linprog has EXITFLAG:
+3: Solution feasible w.r.t. rel. constraint tol., but not abs. tol.
+1: Converged to a solution.
0: $\quad$ Number of iterations or time exceeded maximum.
-2: $\quad$ No feasible point found.
-3: Problem unbounded.
-4: $\quad$ NaN encountered.
-5: Both primal and dual problems are infeasible.
-7: Search direction became too small.
-9: Solver lost feasibility.

## Numerical example: Innocent LP

```
argmin }\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}\quad\mathrm{ s.t. }\quad\mp@subsup{x}{1}{}+(1-\delta)\mp@subsup{x}{2}{}=1,\quad\mp@subsup{x}{j}{}\geq
    x\in\mathbb{R}}\mp@subsup{}{}{2
s.t. \(\quad x_{1}+(1-\delta) x_{2}=1\),
\(x_{j} \geq 0\)
```

MATLAB's linprog has EXITFLAG:
+3: Solution feasible w.r.t. rel. constraint tol., but not abs. tol.
+1: Converged to a solution.
0: $\quad$ Number of iterations or time exceeded maximum.
-2: $\quad$ No feasible point found.
-3: Problem unbounded.
-4: $\quad$ NaN encountered.
-5: Both primal and dual problems are infeasible.
-7: Search direction became too small.
-9: Solver lost feasibility.

## Numerical example: Innocent LP

|  | 'dual-simplex' |  | 'interior-point' |  | 'interior-point-legacy' |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta$ | $\\|\hat{x}-x\\|_{2}$ EXITFLAG | $\\|\hat{x}-x\\|_{2}$ EXITFLAG | $\\|\hat{x}-x\\|_{2}$ | EXITFLAG |  |  |
| $2^{-1}$ | 0 | 1 | 0 | 1 | $6.0 \cdot 10^{-12}$ | 1 |
| $2^{-15}$ | 0 | 1 | 0 | 1 | $3.0 \cdot 10^{-5}$ | 1 |
| $2^{-20}$ | 0 | 1 | 0 | 1 | $7.0 \cdot 10^{-7}$ | 1 |
| $2^{-24}$ | 0 | 1 | 0 | 1 | $7.1 \cdot 10^{-8}$ | 1 |
| $2^{-26}$ | 1.4 | 1 | 1.4 | 1 | $1.2 \cdot 10^{-1}$ | 1 |
| $2^{-28}$ | 1.4 | 1 | 1.4 | 1 | $4.6 \cdot 10^{-1}$ | 1 |
| $2^{-30}$ | 1.4 | 1 | 1.4 | 1 | $7.1 \cdot 10^{-1}$ | 1 |

$x=$ computed "solution", $\hat{x}=$ true solution, $\varepsilon_{\text {mach }}=2^{-52}$

## Numerical example: Innocent LP

|  | 'dual-simplex' |  | 'interior-point' |  | 'interior-point-legacy' |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta$ | $\\|\hat{x}-x\\|_{2}$ EXITFLAG | $\\|\hat{x}-x\\|_{2}$ EXITFLAG | $\\|\hat{x}-x\\|_{2}$ | EXITFLAG |  |  |
| $2^{-1}$ | 0 | 1 | 0 | 1 | $6.0 \cdot 10^{-12}$ | 1 |
| $2^{-15}$ | 0 | 1 | 0 | 1 | $3.0 \cdot 10^{-5}$ | 1 |
| $2^{-20}$ | 0 | 1 | 0 | 1 | $7.0 \cdot 10^{-7}$ | 1 |
| $2^{-24}$ | 0 | 1 | 0 | 1 | $7.1 \cdot 10^{-8}$ | 1 |
| $2^{-26}$ | 1.4 | 1 | 1.4 | 1 | $1.2 \cdot 10^{-1}$ | 1 |
| $2^{-28}$ | 1.4 | 1 | 1.4 | 1 | $4.6 \cdot 10^{-1}$ | 1 |
| $2^{-30}$ | 1.4 | 1 | 1.4 | 1 | $7.1 \cdot 10^{-1}$ | 1 |

$x=$ computed "solution", $\hat{x}=$ true solution, $\varepsilon_{\text {mach }}=2^{-52}$

## What went wrong?

## What went wrong?

## $1^{\text {st }}$ issue: Smale's $9^{\text {th }}$ problem*

Recall complexity of Karmarkar's algorithm: $O\left(n^{3.5} L^{2} \log (L) \log (\log (L))\right)$ Question: What happens with $L=\infty$ ?
E.g., irrational inputs, computer-assisted proofs etc.

[^2]
## $1^{\text {st }}$ issue: Smale's $9^{\text {th }}$ problem*

Recall complexity of Karmarkar's algorithm: $O\left(n^{3.5} L^{2} \log (L) \log (\log (L))\right)$ Question: What happens with $L=\infty$ ?
E.g., irrational inputs, computer-assisted proofs etc.

Smale's 9th problem: "Is there a polynomial time algorithm over the real numbers which decides the feasibility of the linear system of inequalities $A x \geq y$, and if so, outputs such an $x$ ?"

[^3]
## $1^{\text {st }}$ issue: Smale's $9^{\text {th }}$ problem*

Recall complexity of Karmarkar's algorithm: $O\left(n^{3.5} L^{2} \log (L) \log (\log (L))\right)$ Question: What happens with $L=\infty$ ?
E.g., irrational inputs, computer-assisted proofs etc.

Smale's 9th problem: "Is there a polynomial time algorithm over the real numbers which decides the feasibility of the linear system of inequalities $A x \geq y$, and if so, outputs such an $x$ ?"

[^4]
## $2^{\text {nd }}$ issue: inexactness

"Real number computations and algorithms which work only in exact arithmetic can offer only limited understanding. Models which process approximate inputs and which permit round-off computations are called for."

- S. Smale (from the list of mathematical problems for the 21st century)

There will always be numbers which you can't work with exactly!

## $2^{\text {nd }}$ issue: inexactness

"Real number computations and algorithms which work only in exact arithmetic can offer only limited understanding. Models which process approximate inputs and which permit round-off computations are called for."

- S. Smale (from the list of mathematical problems for the 21st century)

There will always be numbers which you can't work with exactly!

Extended model: Given domain $\Omega$, for any $\iota \in \Omega$ and $k \in \mathbb{N}$, the algorithm can't access $\iota$. Instead, it accesses oracle $\mathcal{O}(\iota, k)$ (cost poly in $k$ ) s.t.

$$
\|\iota-\mathcal{O}(\iota, k)\|_{\infty} \leq 2^{-k}
$$

## $2^{\text {nd }}$ issue: inexactness

"Real number computations and algorithms which work only in exact arithmetic can offer only limited understanding. Models which process approximate inputs and which permit round-off computations are called for."

- S. Smale (from the list of mathematical problems for the 21st century)

There will always be numbers which you can't work with exactly!

Extended model: Given domain $\Omega$, for any $\iota \in \Omega$ and $k \in \mathbb{N}$, the algorithm can't access $\iota$. Instead, it accesses oracle $\mathcal{O}(\iota, k)$ (cost poly in $k$ ) s.t.

$$
\|\iota-\mathcal{O}(\iota, k)\|_{\infty} \leq 2^{-k}
$$

## Extended Smale's 9th problem

$1^{\text {st }}$ issue: Smale's 9th problem Polytime alg. for feasibility of linear system of inequalities over $\mathbb{R}$

## Extended Smale's 9th problem

$1^{\text {st }}$ issue: Smale's 9th problem Polytime alg. for feasibility of linear system of inequalities over $\mathbb{R}$
$2^{\text {nd }}$ issue:
Inexactness of input and computations

## Extended Smale's 9th problem

$1^{\text {st }}$ issue: Smale's 9th problem
Polytime alg. for feasibility of linear system of inequalities over $\mathbb{R}$
$2^{\text {nd }}$ issue:
Inexactness of input and computations

Extended Smale's $9^{\text {th }}$ problem: Given a class of LPs that contain irrational numbers (given by an oracle in polynomial time), what is the computational cost of computing a K-digit approximate minimiser? Is the problem solvable in polynomial time in the number of variables?

## Extended Smale's 9th problem

$1^{\text {st }}$ issue: Smale's 9th problem
Polytime alg. for feasibility of linear system of inequalities over $\mathbb{R}$
$2^{\text {nd }}$ issue:
Inexactness of input and computations

Extended Smale's $9^{\text {th }}$ problem: Given a class of LPs that contain irrational numbers (given by an oracle in polynomial time), what is the computational cost of computing a K-digit approximate minimiser? Is the problem solvable in polynomial time in the number of variables?

## Other common optimization problems

Talked about LPs and basis pursuit. Also have:

- Semidefinite prog.:

$$
\underset{X \in \mathbb{S}^{n}}{\operatorname{argmin}}\langle X, C\rangle \text { s. t. }\left\langle X, A_{k}\right\rangle=b_{k}, k=1, \ldots, m, X \succcurlyeq 0 .
$$

- Unconstrained Lasso:

$$
\underset{x}{\operatorname{argmin}}\|A x-y\|_{2}^{2}+\lambda \mathcal{J}(x), \quad \mathcal{J}(x)=\|x\|_{1} \text { or } \operatorname{TV}(x) .
$$

- Constrained Lasso:

$$
\underset{\sim}{\operatorname{argmin}}\|A x-y\|_{2}^{2} \text { s.t. } \mathcal{J}(x) \leq \delta, \quad \mathcal{J}(x)=\|x\|_{1} \text { or } \operatorname{TV}(x) .
$$

$$
A \in \mathbb{C}^{m \times N}, \quad y \in \mathbb{C}^{m}
$$

## Other common optimization problems

Talked about LPs and basis pursuit. Also have:

- Semidefinite prog.:

$$
\underset{X \in \mathbb{S}^{n}}{\operatorname{argmin}}\langle X, C\rangle \text { s. t. }\left\langle X, A_{k}\right\rangle=b_{k}, k=1, \ldots, m, X \succcurlyeq 0 .
$$

- Unconstrained Lasso:

$$
\underset{x}{\operatorname{argmin}}\|A x-y\|_{2}^{2}+\lambda \mathcal{J}(x), \quad \mathcal{J}(x)=\|x\|_{1} \text { or } \operatorname{TV}(x) .
$$

- Constrained Lasso:

$$
\underset{\sim}{\operatorname{argmin}}\|A x-y\|_{2}^{2} \text { s.t. } \mathcal{J}(x) \leq \delta, \quad \mathcal{J}(x)=\|x\|_{1} \text { or } \operatorname{TV}(x) .
$$

$$
A \in \mathbb{C}^{m \times N}, \quad y \in \mathbb{C}^{m}
$$

Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

NB: Extends to problem of feasibility.
B., Hansen, Vlačić, "The extended Smale's 9th problem," preprint.

Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).

NB: Extends to problem of feasibility.

```
B., Hansen, Vlačić, "The extended Smale's 9th problem," preprint.
```

Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).
2. If we allow random alg. with non-zero prob. of not halting, then, for any $p>2 / 3$, no alg. produces $\boldsymbol{K}$ correct digits over all of $\Omega$ with prob. $\geq p$. However, $\exists$ such an alg. for $p=2 / 3$.

NB: Extends to problem of feasibility.

[^5]Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).
2. If we allow random alg. with non-zero prob. of not halting, then, for any $p>2 / 3$, no alg. produces $\boldsymbol{K}$ correct digits over all of $\Omega$ with prob. $\geq p$. However, $\exists$ such an alg. for $p=2 / 3$.
3. (a) $\exists$ alg. that produces $\boldsymbol{K} \mathbf{- 1}$ correct digits over all of $\Omega$. However, for any such alg., $T>0$, fixed input dim. $(m, N), \exists \iota \in \Omega$ of dim. ( $m, N$ ) s.t. the runtime on input $\iota$ exceeds $T$.
(b) For any random alg. $\Gamma, T>0$, fixed input dim. ( $m, N$ ) and $p<1 / 2, \exists \iota \in \Omega$ of dim. ( $m, N$ ) s.t. $\mathbb{P}(\Gamma(\imath)$ does not have $\boldsymbol{K} \mathbf{- 1}$ correct digits or run time $>T)>p$.

NB: Extends to problem of feasibility.
B., Hansen, Vlačić, "The extended Smale's 9th problem," preprint.

Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).
2. If we allow random alg. with non-zero prob. of not halting, then, for any $p>2 / 3$, no alg. produces $\boldsymbol{K}$ correct digits over all of $\Omega$ with prob. $\geq p$. However, $\exists$ such an alg. for $p=2 / 3$.
3. (a) $\exists$ alg. that produces $\boldsymbol{K} \mathbf{- 1}$ correct digits over all of $\Omega$. However, for any such alg., $T>0$, fixed input dim. $(m, N), \exists \iota \in \Omega$ of dim. ( $m, N$ ) s.t. the runtime on input $\iota$ exceeds $T$.
(b) For any random alg. $\Gamma, T>0$, fixed input dim. ( $m, N$ ) and $p<1 / 2, \exists \iota \in \Omega$ of dim. ( $m, N$ ) s.t. $\mathbb{P}(\Gamma(\iota)$ does not have $\boldsymbol{K} \mathbf{- 1}$ correct digits or run time $>T)>p$.
4. $\exists$ alg. that produces $\boldsymbol{K} \mathbf{- 2}$ correct digits over all of $\Omega$ s.t. on an input with $\operatorname{dim}$. $(m, N)$ (arbitrary)
(a) The runtime (and, in the Turing case, the space complexity) is $\mathrm{O}($ poly $(m+N))$.
(b) The number of digits required from the oracle is $\mathrm{O}($ poly $(\log (m+N)))$.

NB: Extends to problem of feasibility.

Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).
2. If we allow random alg. with non-zero prob. of not halting, then, for any $p>2 / 3$, no alg. produces $\boldsymbol{K}$ correct digits over all of $\Omega$ with prob. $\geq p$. However, $\exists$ such an alg. for $p=2 / 3$.
3. (a) $\exists$ alg. that produces $\boldsymbol{K}-\mathbf{1}$ correct digits over all of $\Omega$. However, for any such alg., $T>0$, fixed input dim. $(m, N), \exists \iota \in \Omega$ of dim. ( $m, N$ ) s.t. the runtime on input $\iota$ exceeds $T$.
(b) For any random alg. $\Gamma, T>0$, fixed input $\operatorname{dim}$. ( $m, N$ ) and $p<1 / 2, \exists \iota \in \Omega$ of dim. ( $m, N$ ) s.t. $\mathbb{P}(\Gamma(\imath)$ does not have $\boldsymbol{K} \mathbf{- 1}$ correct digits or run time $>T)>p$.
4. $\exists$ alg. that produces $\boldsymbol{K} \mathbf{- 2}$ correct digits over all of $\Omega$ s.t. on an input with $\operatorname{dim}$. $(m, N)$ (arbitrary)
(a) The runtime (and, in the Turing case, the space complexity) is $\mathrm{O}($ poly $(m+N))$.
(b) The number of digits required from the oracle is $\mathrm{O}($ poly $(\log (m+N)))$.
5. It is impossible to decide if a given alg. fails to produce $K$ correct digits on a given input (with prob. $>1 / 2$ in randomised case), even when given an oracle that solves the original problem accurately. Hence, producing an EXITFLAG is strictly harder than solving the original problem.

NB: Extends to problem of feasibility.

[^6]Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).
2. If we J random alg. with non-zero prob. of not halting, then, for any $p>2 / 3$, no alg. produces $\boldsymbol{K}$ correc ligits over all of $\Omega$ with prob. $\geq p$. However, $\exists$ such an alg. for $p=2 / 3$.
3. (a) $\exists$ alg. t| $1^{\text {st }}$ numerical example digits over all of $\Omega$. However, for any such alg., $T>0$, fixed input dim. $\Rightarrow$ happens in practice! $V$ ) s.t. the runtime on input $\iota$ exceeds $T$.
(b) For any random alg. $\Gamma, T>0$, fixed input $\operatorname{dim}$. $(m, N)$ and $p<1 / 2, \exists \iota$ $\mathbb{P}(\Gamma(\iota)$ does not have $\boldsymbol{K} \mathbf{- 1}$ correct digits or run time $>$

## Related to $\mathbf{2}^{\text {nd }}$ <br> numerical example

4. $\quad \exists$ alg. that produces $\boldsymbol{K} \mathbf{- 2}$ correct digits over all of $\Omega$ s.t. on an input with dim. ( $m,{ }^{\prime}$ ) (arbitrary)
(a) The runtime (and, in the Turing case, the space complexity) is $\mathrm{O}($ poly $(m+N))$.
(b) The number of digits required from the oracle is $\mathrm{O}($ poly $(\log (m+N)))$.
5. It is impossible to decide if a given alg. fails to produce $K$ correct digits on a given input (with prob. $>1 / 2$ in randomised case), even when given an oracle that solves the original problem accurately. Hence, producing an EXITFLAG is strictly harder than solving the original problem.

NB: Extends to problem of feasibility.

Theorem: For any of prev. problems, integer $K \geq 3, \exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. No (random) alg. can produce $K$ correct digits over all of $\Omega$ (with prob. $\geq p$, for any $p>1 / 2$ ).
2. If we J random alg. with non-zero prob. of not halting, then, for any $p>2 / 3$, no alg. produces $\boldsymbol{K}$ correc ligits over all of $\Omega$ with prob. $\geq p$. However, $\exists$ such an alg. for $p=2 / 3$.
3. (a) $\exists$ alg. t| $1^{\text {st }}$ numerical example digits over all of $\Omega$. However, for any such alg., $T>0$, fixed input dim. $\Rightarrow$ happens in practice! $V$ ) s.t. the runtime on input $\iota$ exceeds $T$.
(b) For any random alg. $\Gamma, T>0$, fixed input $\operatorname{dim}$. $(m, N)$ and $p<1 / 2, \exists \iota$ $\mathbb{P}(\Gamma(\iota)$ does not have $\boldsymbol{K} \mathbf{- 1}$ correct digits or run time $>$

## Related to $\mathbf{2}^{\text {nd }}$ <br> numerical example

4. $\quad \exists$ alg. that produces $\boldsymbol{K} \mathbf{- 2}$ correct digits over all of $\Omega$ s.t. on an input with dim. ( $m,{ }^{\prime}$ ) (arbitrary)
(a) The runtime (and, in the Turing case, the space complexity) is $\mathrm{O}($ poly $(m+N))$.
(b) The number of digits required from the oracle is $\mathrm{O}($ poly $(\log (m+N)))$.
5. It is impossible to decide if a given alg. fails to produce $K$ correct digits on a given input (with prob. $>1 / 2$ in randomised case), even when given an oracle that solves the original problem accurately. Hence, producing an EXITFLAG is strictly harder than solving the original problem.

NB: Extends to problem of feasibility.

## Breakdown epsilons (computational limitations)

Strong breakdown-epsilon (e.g., $10^{-K}$ in prev. thm.):

$$
\varepsilon_{B}^{s}=\sup \{\varepsilon \geq 0: \forall \text { alg. } \Gamma \exists \iota \in \Omega \text { s.t. } \operatorname{dist}(\Gamma(\iota), \Xi(\iota))>\varepsilon\}
$$

Weak breakdown-epsilon (e.g. , $10^{-(K-1)}$ in prev. thm.):

$$
\varepsilon_{B}^{w}=\sup \left\{\begin{array}{r}
\varepsilon \geq 0: \forall \text { alg. } \Gamma, \forall T>0, \exists \iota \in \Omega \text { s.t. } \operatorname{dist}(\Gamma(\imath), \Xi(\iota))>\varepsilon \\
\text { or runtime }(\Gamma, \iota)>T
\end{array}\right\}
$$

## Breakdown epsilons (computational limitations)

Strong breakdown-epsilon (e.g., $10^{-K}$ in prev. thm.):

$$
\varepsilon_{B}^{S}=\sup \{\varepsilon \geq 0: \forall \text { alg. } \Gamma \exists \iota \in \Omega \text { s.t. } \operatorname{dist}(\Gamma(\iota), \Xi(\iota))>\varepsilon\}
$$

Weak breakdown-epsilon (e.g., $10^{-(K-1)}$ in prev. thm.):

$$
\varepsilon_{B}^{w}=\sup \left\{\begin{aligned}
\varepsilon \geq 0: \forall \text { alg. } \Gamma, \forall T>0, \exists \iota \in \Omega & \text { s.t. } \operatorname{dist}(\Gamma(\imath), \Xi(\iota))>\varepsilon \\
& \text { or runtime }(\Gamma, \iota)>T
\end{aligned}\right\}
$$

How much accuracy do we need in a computer assisted proof? Is the breakdown epsilon for the problem below that threshold?

## A related story: Hardness of approximation

Given $\iota \in \Omega \subseteq \mathbb{R}^{n}$, have feasible set $F(\imath)$ \& objective fun. $f_{l}$.

$$
\text { Compute: } \operatorname{OPT}(\iota)=\min _{x \in F(\iota)} f_{\iota}(x)
$$

## A related story: Hardness of approximation

Given $\iota \in \Omega \subseteq \mathbb{R}^{n}$, have feasible set $F(\imath)$ \& objective fun. $f_{l}$.

$$
\text { Compute: } \operatorname{OPT}(\iota)=\min _{x \in F(\iota)} f_{\iota}(x)
$$

Does there exist alg. $\Gamma$ s.t. $\forall \iota \in \Omega, \Gamma(\imath) \in F(\iota)$ and

$$
f_{\iota}(\Gamma(\iota)) \leq(1+\varepsilon) \operatorname{OPT}(\iota), \quad \operatorname{runtime}(\Gamma, \iota)=O(\operatorname{poly}(n))
$$

## A related story: Hardness of approximation

Given $\iota \in \Omega \subseteq \mathbb{R}^{n}$, have feasible set $F(\imath)$ \& objective fun. $f_{l}$.

$$
\text { Compute: } \operatorname{OPT}(\iota)=\min _{x \in F(\imath)} f_{\iota}(x)
$$

Does there exist alg. $\Gamma$ s.t. $\forall \iota \in \Omega, \Gamma(\imath) \in F(\iota)$ and

$$
\left.f_{\imath}(\Gamma(\imath)) \leq(1+\varepsilon) \operatorname{OPT}(\iota), \quad \operatorname{runtime}(\Gamma, \iota)=O(\operatorname{poly}(n))\right]
$$

Typically, for combinatorial prob., $\exists \varepsilon_{A}>0$ s.t. computing $\varepsilon$-approx. solution is

$$
\begin{array}{lll}
\text { (a) } \in \mathrm{P} \text { if } \varepsilon_{A}<\varepsilon & \text { and } & \text { (b) NP-hard if } \varepsilon<\varepsilon_{A}
\end{array}
$$

## A related story: Hardness of approximation

Given $\iota \in \Omega \subseteq \mathbb{R}^{n}$, have feasible set $F(\imath)$ \& objective fun. $f_{l}$.

$$
\text { Compute: } \operatorname{OPT}(\iota)=\min _{x \in F(\imath)} f_{\iota}(x)
$$

Does there exist alg. $\Gamma$ s.t. $\forall \iota \in \Omega, \Gamma(\imath) \in F(\iota)$ and

$$
\left.f_{\imath}(\Gamma(\imath)) \leq(1+\varepsilon) \operatorname{OPT}(\iota), \quad \operatorname{runtime}(\Gamma, \iota)=O(\operatorname{poly}(n))\right]
$$

Typically, for combinatorial prob., $\exists \varepsilon_{A}>0$ s.t. computing $\varepsilon$-approx. solution is

$$
\begin{array}{lll}
\text { (a) } \in \mathrm{P} \text { if } \varepsilon_{A}<\varepsilon & \text { and } & \text { (b) NP-hard if } \varepsilon<\varepsilon_{A}
\end{array}
$$

## Phase transitions



## Phase transitions

Hardness of Approximation
PCP Theorem* often leads to threshold $\varepsilon_{A}>0$. I Assuming $P \neq N P$, often have phase transition:

*2001 Gödel Prize awarded to S. Arora, U. Feige, S. I Goldwasser, C. Lund, L. Lovász, R. Motwani, S. Safra, M. I Sudan, and M. Szegedy for work on the PCP theorem and its connection to hardness of approximation.

## Generalised Hardness of Approximation (GHA)

Extended Smale's 9th problem shows:


Holds even if $P=N P!$

The SCI hierarchy for computer-assisted proofs
Arbitrary prec. or decision problems


The SCI hierarchy for computer-assisted proofs
Arbitrary prec. or decision problems $\Sigma_{2} \neq \Sigma_{2} \stackrel{\vdots}{\cup} \Pi_{2} \neq \Pi_{2}$ "scl-ibrary"


## Further examples and questions I

- The SCI hierarchy appears throughout computational mathematics.
- Results so far: spectral theory, PDEs and ODEs, iterative rational maps, generalized Collatz problem (and dec. problems), topology, inverse problems, optimization, AI, ...
- Can we classify which PDEs allow $\Sigma_{1} \cup \Pi_{1}$ verification of blow-up?
- Nonlinear dyn. systems can be studied through transfer operators. Can we develop a foundations theory for their spectral properties? Can this be done by simply observing the dynamical system?

[^7]
## Further examples and questions II

- GHA appears in learning problems (adaptive/probabilistic training data):

Smale's 18th problem: What are the limits of artificial intelligence?
Image reconstruction and inverse problems where:

- Stable and accurate neural networks exist BUT...
- Whether we can train them depends on $\varepsilon$, amount of training data, stability requirements.
- Can we develop a theory for characterisations of phase transitions in GHA?

NB: Specific cases known for compressed sensing etc.

- What other types of problems have this phenomena?
- Re computer-assisted proofs: For which problems can we compute exit flags?

[^8] Smale's 18th problem," Proc. Natl. Acad. Sci. USA.

## Summary

Classifications $\Rightarrow$ assumptions needed for use in a computer-assisted proof.

SCI hierarchy: a tool that allows us to

- Classify the difficulty of both continuous and discrete computational problems.
- Prove that algorithms are optimal and find them.
- $\Sigma_{1}$ and $\Pi_{1}$ classifications allow verified computations.

GHA: phase transitions (for inexact input) depending on the accuracy goal $\varepsilon$

- $\varepsilon_{B}^{w}<\varepsilon: \in P$.
- $\varepsilon_{B}^{S}<\varepsilon<\varepsilon_{B}^{W}$ : computable, but $\notin$ k-EXPTIME $\forall k$.
- $\varepsilon<\varepsilon_{B}^{S}$ : impossible to compute.

Additional slides

## Problem: hallucinations and instability

Hallucinations in image reconstruction Original image

"Al generated hallucination", from Facebook and NYU's FastMRI challenge 2020

Instabilities in medical diagnosis Original Mole Perturbed Mole


From Finlayson et al., "Adversarial attacks on medical machine learning," Science, 2019.

## When can we make Al robust and trustworthy?

## Example of the limits of deep learning

Paradox: "Nice" linear inverse problems where a stable and accurate neural network for image reconstruction exists, but it can never be trained!
E.g., suppose we want to solve (holds for much more general problems)

$$
\begin{aligned}
& \left(P_{1}\right) \quad \operatorname{argmin}_{x \in \mathbb{C}^{N}} F_{1}^{A}(x):=\|x\|_{l_{w}^{1}}, \text { such that }\|A x-y\|_{l^{2}} \leq \epsilon, \\
& \left(P_{2}\right) \quad \operatorname{argmin}_{x \in \mathbb{C}^{N}} F_{2}^{A}(x, y, \lambda):=\lambda\|x\|_{l_{w}^{1}}+\|A x-y\|_{l^{2}}^{2}, \\
& \left(P_{3}\right) \quad \operatorname{argmin}_{x \in \mathbb{C}^{N}} F_{3}^{A}(x, y, \lambda):=\lambda\|x\|_{l_{w}^{1}}^{1}+\|A x-y\|_{l^{2}} . \\
& A \in \mathbb{C}^{m \times N}(\text { modality }, m<N), \quad S=\left\{y_{j}\right\}_{j=1}^{R} \text { (samples) }
\end{aligned}
$$

Arises when given $y \approx A x+e$.

## Arbitrary precision of training data

In practice, $A$ not known exactly or cannot be stored to infinite precision.
Assume access to: $\left\{y_{k, n}\right\}_{k=1}^{R}$ and $A_{n}$ (rational approximations, e.g., floats) such that

$$
\left\|y_{k, n}-y_{k}\right\| \leq 2^{-n}, \quad\left\|A_{n}-A\right\| \leq 2^{-n}, \quad \forall n \in \mathbb{N}
$$

Training set for $(A, \mathcal{S}) \in \Omega$ :

$$
\iota_{A, \mathcal{S}}:=\left\{\left(y_{k, n}, A_{n}\right) \mid k=1, \ldots, R \text { and } n \in \mathbb{N}\right\}
$$

In a nutshell: allow access to arbitrary precision training data.

Question: Given a collection $\Omega$ of $(A, \mathcal{S})$, does there exist a neural network approximating $\equiv$ (solution map of $\left(P_{j}\right)$ ), and can it be trained by an algorithm?

## Condition numbers

Given $\Omega \subseteq \mathbb{C}^{n}$, define

$$
\operatorname{Act}(\Omega)=\left\{j: \exists x, y \in \Omega, x_{j} \neq y_{j}\right\}, \quad \Omega^{\operatorname{Act}}=\left\{x: \exists y \in \Omega, x_{\operatorname{Act}(\Omega)^{c}}=y_{\operatorname{Act}(\Omega)^{c}}\right\}
$$

- Condition of a mapping $\Xi: \widehat{\Omega} \rightrightarrows \mathbb{C}^{m}$ with $\Omega \subseteq \widehat{\Omega}$ :

$$
\operatorname{Cond}(\Xi, \Omega)=\sup _{x \in \Omega} \lim _{\varepsilon \rightarrow 0_{+}} \sup _{\substack{x+z \in \Omega^{\text {Act }} \cap \widehat{\Omega} \\ 0<\|z\|_{\infty}<\varepsilon}} \frac{\operatorname{dist}(\Xi(x+z), \Xi(x))}{\|z\|_{\infty}}
$$

- For problems with constraints (e.g., basis pursuit $P_{1}$ or LPs)

$$
\begin{gathered}
v(A, y)=\inf \left\{\varepsilon \geq 0:\|\hat{y}-y\|_{2},\|\hat{A}-A\| \leq \varepsilon,(\hat{A}, \hat{y}) \in \Omega^{\text {Act }} \text { and infeasible }\right\} \\
C_{\mathrm{FP}}(A, y)=\frac{\max \left\{\|y\|_{2},\|A\|\right\}}{v(A, y)}
\end{gathered}
$$

- Renegar condition number

$$
\begin{gathered}
\mu(A, y)=\inf \left\{\varepsilon \geq 0:\|\hat{y}-y\|_{2},\|\hat{A}-A\| \leq \varepsilon,(\hat{A}, \hat{y}) \in \Omega^{\text {Act }}, \Xi \text { multivalued }\right\} \\
C_{\mathrm{RCC}}(A, y)=\frac{\max \left\{\|y\|_{2},\|A\|\right\}}{\mu(A, y)}
\end{gathered}
$$

Theorem: For any of prev. problems, integer $K \geq 3$ and $L \in \mathbb{N}, \exists$ a well-conditioned class $\Omega(K)$ of inputs s.t. simultaneously

1. No deterministic alg. can, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produce a neural network (NN) $\phi$ with

$$
\begin{equation*}
\min _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-K} \quad \forall(A, S) \in \Omega(K) \tag{1}
\end{equation*}
$$

For any $p>1 / 2$, no random alg. (any model of comp.) can produce a NN $\phi$ s.t. (1) holds with prob. $\geq p$.
2. (a) $\exists$ deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{T}$, produces a neural network (NN) $\phi$ with
(2)

$$
\max _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-1)} \quad \forall(A, S) \in \Omega(K)
$$

(b) However, for any probabilistic Turing Machine that produces such a NN, any $M \in \mathbb{N}$ and $p \in\left[0, \frac{N-m}{N+1-m}\right)$, there exists a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$ s.t. $\forall y \in S$
$\mathbb{P}\left(\inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2}>10^{-(K-1)}\right.$ or size of training data to construct $\phi$ exceeds $\left.M\right)>p$.
3. $\exists$ deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produces a $\mathrm{NN} \phi$ accessing at most $L$ training samples of $t_{A, S}$ s.t.

$$
\begin{equation*}
\max _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-2)} \quad \forall(A, S) \in \Omega(K) \tag{3}
\end{equation*}
$$

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

Theorem: For any of prev. problems, integer $K \geq 3$ and $L \in \mathbb{N}, \exists$ a well-conditioned class $\Omega(K)$ of inputs s.t. simultaneously

1. No deterministic alg. can, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produce a neural network (NN) $\phi$ with

$$
\begin{equation*}
\min _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-K} \quad \forall(A, S) \in \Omega(K) \tag{1}
\end{equation*}
$$

For any $p>1 / 2$, no random alg. (any model of comp.) can produce a NN $\phi$ s.t. (1) holds with prob. $\geq p$.
2. (a) $\exists$ deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produces a neural network (NN) $\phi$ with
(2) $\quad \max \inf _{1 * \sim(1),}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-1)} \quad \forall(A, S) \in \Omega(K)$.

## Holds for any architecture, any precision of training data. $\Rightarrow$ Classification theory telling us what can and cannot be done

$\mathbb{P}\left(\inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2}>10^{-(K-1)}\right.$ or size of training data to construct $\phi$ exceeds $\left.M\right)>p$.
3. $\exists$ deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produces a $\mathrm{NN} \phi$ accessing at most $L$ training samples of $t_{A, S}$ s.t.

$$
\begin{equation*}
\max _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-2)} \quad \forall(A, S) \in \Omega(K) \tag{3}
\end{equation*}
$$

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

## Feasibility problem

Given $K \in \mathbb{N}, M \in \mathbb{R}, A \in \mathbb{R}^{m \times N}$, and $y \in \mathbb{R}^{m}$ does $\exists x \in \mathbb{R}^{N}$ s.t.

$$
\langle x, c\rangle_{K}=\left\lfloor 10^{K}\langle x, c\rangle\right\rfloor 10^{-K} \leq M \quad \text { and } \quad A x=y, x \geq 0 ?
$$

$$
\Xi_{K}(A, y)=\left\{\begin{array}{lr}
\text { Yes, } & \text { if such an } x \text { exists } \\
\text { No, } & \text { otherwise } .
\end{array}\right.
$$

Theorem: There are infinitely many $M \in \mathbb{R}$ such that the following happens: for any integer $K \geq 3$, $\exists$ class $\Omega(K)$ of inputs s.t. simultaneously

1. $\nexists$ sequence of alg. $\left\{\Gamma_{n}\right\}$ s.t. $\Gamma_{n} \uparrow \Xi_{K}$ on $\Omega$. I.e., $\left\{\Xi_{K}, \Omega\right\} \notin \Sigma_{1}$.
2. No random alg. exists that solves $\Xi_{K}$ on all inputs with probability exceeding $1 / 2$.
3. (a) $\exists$ alg. that solves $\Xi_{K-1}$. However, for any such alg., $T>0$, fixed input dim. $(m, N), \exists \iota \in \Omega$ of $\operatorname{dim} .(m, N)$ s.t. the runtime on input $\iota$ exceeds $T$.
(b) For any random alg. $\Gamma, T>0$, fixed input $\operatorname{dim}$. ( $m, N$ ) and $p<1 / 2, \exists \iota \in \Omega$ of $\operatorname{dim}$. ( $m, N$ ) s.t.

$$
\mathbb{P}\left(\Gamma(l) \neq \Xi_{K-1}(\iota) \text { or run time }>T\right)>p
$$

4. $\exists$ alg. that solves $\Xi_{K-2}$ over all of $\Omega$ s.t. on an input with $\operatorname{dim} .(m, N)$ (arbitrary)
(a) The runtime (and, in the Turing case, the space complexity) is $\mathrm{O}($ poly $(m+N))$.
(b) The number of digits required from the oracle is $\mathrm{O}(\operatorname{poly}(\log (m+N)))$.

NB: There are classes $\Omega$ s.t. infinitely many $\iota \in \Omega$ have $C_{R C C}=\infty$. However, $\exists$ alg. that solves LP/basis pursuit to $K$ digits on $\Omega$ s.t.
(a) Runtime (and, in Turing case, space complexity) is $\mathrm{O}($ poly $(m+N+K)$ ).
(b) Number of digits required from oracle is $\mathrm{O}(\operatorname{poly}(\log (m+N+\mathrm{K}))$ ).

## The world of neural networks



Given a problem and conditions, where does it sit in this diagram?

## The world of neural networks



Given a problem and conditions, where does it sit in this diagram?

## Example counterpart theorem

Certain conditions: stable neural networks trained with exponential accuracy. E.g., approximate Łojasiewicz-type inequality:

$$
\begin{gathered}
\text { (1) } \min _{x \in \mathbb{C}^{N}} f(x) \quad \text { s.t. } \quad\|A x-y\| \leq \varepsilon \\
\operatorname{dist}(x, \text { solution }) \leq \alpha\left(\left[f(x)-f^{*}\right]+[\|A x-y\|-\varepsilon]+\delta\right)
\end{gathered}
$$

Fast Iterative REstarted NETworks (FIRENETs)
(unrolled primal-dual with novel restart scheme)
Theorem: Training algorithm that, under above assumption, produces stable neural networks $\varphi_{n}$ of width $O(N)$, depth $O(n)$, guaranteed worst bound

$$
\operatorname{dist}\left(\varphi_{n}(y), \text { solution }\right) \lesssim e^{-n}+\delta
$$

[^9]C., "WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions," SIAM J. Imaging Sci., 2022.

Numerical example of GHA


Fourier Sampling


Figure: Images corrupted with $2 \%$ Gaussian noise and reconstructed using $15 \%$ sampling.

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.


## Numerical example of GHA




- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.


## Example of severe instability

Original $x$

$\Psi\left(A\left(x+r_{1}\right)\right)$

$\left|x+r_{2}\right|$

$\Psi\left(A\left(x+r_{2}\right)\right)$


$\Psi\left(A\left(x+r_{3}\right)\right)$


- Zhu et al., "Image reconstruction by domain-transform manifold learning," Nature, 2018.
- Antun et al., "On instabilities of deep learning in image reconstruction and the potential costs of AI," PNAS, 2020.

FIRENET: provably stable (even to adversarial examples) and accurate


[^10]
## Key pillars: stability and accuracy

Original $x$ (full size)


Original
(cropped, red frame)


Original + detail $\left(x+h_{1}\right)$ (cropped, blue frame)


## U-Net with no noise: accurate but unstable

## U-Net: standard

 neural network architecture for imaging. Approx 4 million parameters.Original $x$ (full size)


Original


Original + detail $\left(x+h_{1}\right)$ (cropped, blue frame)



## U-Net with noise: stable but inaccurate



FIRENET: balances stability and accuracy?


FIRENET: balances stability and accuracy?


## Stabilising unstable neural networks

$\Psi(\tilde{y}), \tilde{y}=A x+e_{3}$

$\Phi(\tilde{y}, \Psi(\tilde{y}))$


FIRENET rec. from $y=A x+\tilde{e}_{3}$


AUTOMAP+FIRENET rec. from
$y=A x+\hat{e}_{3}$



[^0]:    C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022

[^1]:    C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022

[^2]:    *Steve Smale's list of problems for the 21st century (requested by Vladimir Arnold), inspired by Hilbert's famous list.

[^3]:    *Steve Smale's list of problems for the 21st century (requested by Vladimir Arnold), inspired by Hilbert's famous list.

[^4]:    *Steve Smale's list of problems for the 21st century (requested by Vladimir Arnold), inspired by Hilbert's famous list.

[^5]:    B., Hansen, Vlačić, "The extended Smale's 9th problem," preprint.

[^6]:    B., Hansen, Vlačić, "The extended Smale's 9th problem," preprint.

[^7]:    McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.
    Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.

    - Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.
    - B., Hansen, Vlačić, "The extended Smale's 9th problem," preprint.
    - Hansen, Becker, "Computing solutions of Schrödinger equations on unbounded domains," preprint.
    C., "Computing semigroups with error control," SIAM J. Numer. Anal., 2022.
    - Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA., 1932.
    - C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

[^8]:    - C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and

[^9]:    C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," PNAS, 2022.

[^10]:    C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," PNAS, 2022.

